Grade Awarded	Mark Required		$\%$ candidates achieving grade
	$(/ 120)$	$\%$	
A	$77+$	64.1%	32.6%
B	$62+$	51.7%	28.7%
C	$48+$	40%	20.7%
D	$33+$	27.5%	12.7%
No award	<33	$<27.5 \%$	5.3%

Section:	Multiple Choice	Extended Answer	Project		
Average Mark:	15.7	125	50.4	195	No Project in 2022

19	B	 A chiral car with four attached．This superimp images in t			
20		囚A Formula $\mathrm{C}_{4} \mathrm{H}_{4}$ ®B Formula $\mathrm{C}_{4} \mathrm{H}_{6}$ $\boxtimes C$ Formula $\mathrm{C}_{4} \mathrm{H}_{8}$ fits empirical formula CH_{2} ®D Formula $\mathrm{C}_{4} \mathrm{H}_{10}$	Element	c	H
			Mass or \％	0.12 g	0.02 g
				0.12	0.02
			No．of moles （divide \％by gfm ）	$\frac{12}{}$ $=0.01$	1 $=0.02$
				0.01	0.02
			Mole ratio （divide through by smallest value）	0.01 $=1$	0.01 $=2$
			Empirical Formula	CH_{2}	
21	B	खA $C_{3} \mathrm{H}_{8} \mathrm{O}_{2}$ has $\mathrm{gfm}=(3 \times 12)+(8 \times 1)+(2 \times 16)=36+8+32=76$ $\nabla \mathrm{B} C_{3} \mathrm{H}_{6} \mathrm{O}_{2}$ has $\mathrm{gfm}=(3 \times 12)+(6 \times 1)+(2 \times 16)=36+6+32=74$ 区C $C_{3} \mathrm{H}_{8} \mathrm{O}$ has $\mathrm{gfm}=(3 \times 12)+(8 \times 1)+(1 \times 16)=36+8+16=72$ खD $C_{3} \mathrm{H}_{8} \mathrm{O}$ has $\mathrm{gfm}=(3 \times 12)+(8 \times 1)+(1 \times 16)=36+8+16=72$			
22	A				
23	B				
24	A	\boxtimes A Distillation will identify the boiling point of compound while purifying compound囚B Recrystallisation will purify a compound but not help identify the compound区C Solvent Extraction will purify a compound but not help identify the compound ®D Melting Point Determination will identify a compound but not purify compound			
25	B	Q A Impurities could move same distance as spo \dagger ∇B There is no reactant left (R) and only the product spot (S) is present $\boxtimes C$ More than one chemical could be present in the spot at（S） 囚D Some reactions at equilibrium neve reach completion			

6 b (ii)	Dotted lines on diagram showing:	Dotted lines must be between: H of an $\mathrm{N}-\mathrm{H}$ or $\mathrm{O}-\mathrm{H}$ bond and O of a $\mathrm{O}-\mathrm{H}$ bond or N of $\mathrm{N}-\mathrm{H}$ bond	
$6 C(i)$	Blue light provides enough energy to break bonds in bilirubin	Blue light has shorter wavelength than red light and has more energy.	
$6 c(i i)$	257.5	$E=\frac{L \times h \times c}{\lambda}=\frac{6.02 \times 10^{23} \mathrm{~mol}^{-1} \times 6.63 \times 10^{-34} \mathrm{Js} \times 3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}}{465 \times 10^{-9} \mathrm{~m}}$	
$7 \mathrm{a}(\mathrm{i}$	Answer to include:	Place empty weighing bottle or weighing boat on balance. Record the mass of the empty item on balance. Add substance to boat/bottle on balance (careful not to spill any onto the top of balance). Record mass and subtract the empty mass to get mass of substance.	
$7 \mathrm{a}(\mathrm{ii})$	0.0204	$\begin{aligned} & \text { Absorbance }=0.42 \therefore\left[\mathrm{MnO}_{4}^{-}\right]=2.1 \times 10^{-4} \mathrm{~mol} \mathrm{l}^{-1} \\ & \text { no. of mol }=\text { volume } \times \text { concentration }=0.11_{\mathrm{l} \text { ires }} \times 2.1 \times 10^{-4} \text { mol } \mathrm{l}^{-1}=0.000021 \mathrm{~mol} \\ & \mathrm{gfm}=54.9 \mathrm{~g} \\ & \text { mass }=\text { no. of mol } \times \mathrm{gfm}=0.000021 \mathrm{~mol} \times 54.9 \mathrm{gmol}=0.00115 \mathrm{~g} \\ & \% \text { mass }=\frac{0.00115}{5.66} \times 100=0.0204 \% \end{aligned}$	
7 b (i)	one from:	high state of purity $\begin{gathered}\text { be stable when sol } \\ \text { and in solution }\end{gathered}$	belid be soluble reasonably high GFM
7 b (i)	0.358	```6Fe}\mp@subsup{}{2+}{+CH\mp@subsup{\textrm{Cr}}{2}{}\mp@subsup{O}{7}{2-}+14\mp@subsup{\textrm{H}}{}{+}\longrightarrow6\mp@subsup{\textrm{Fe}}{}{3+}+2\mp@subsup{\textrm{Cr}}{}{3+}+7\mp@subsup{\textrm{H}}{2}{}\textrm{O} 6mol 1mol 0.000642mol 0.000107mol 25\mp@subsup{\textrm{cm}}{}{3}\mp@subsup{\textrm{Fe}}{}{2+}\mathrm{ solution }=0.000642\textrm{mol} 250\mp@subsup{\textrm{cm}}{}{3}\mp@subsup{\textrm{Fe}}{}{2+}\mathrm{ solution }=0.00642\textrm{mol} gm Fe= 55.8g mass = no. of mol }\times\textrm{gfm}=0.00642\textrm{mol}\times55.8\mp@subsup{\textrm{gmol}}{}{-1}=0.358\textrm{g```	
		1 mark	1mark
7 b (ii)	Answer to contain:	Green wavelengths absorbed turning HOMO into LUMO	Green wavelengths absorbed \therefore red + blue wavelengths transmitted and purple light emitted
8 a	$\begin{gathered} \mathrm{H}_{3} \mathrm{PO}_{3} \\ \text { (any order of elements) } \end{gathered}$	$3 \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{PCl}_{3} \longrightarrow 3 \mathrm{CH}_{3} \mathrm{COCl}+\mathrm{H}_{3} \mathrm{PO}_{3}$	
$8 b(i)$	Negatively charged ions/neutral molecules that are electron rich	Nucleophiles are negatively charged ions or neutral molecules which are electron rich - attracted towards atoms bearing a partial $\delta+$ or full positive charge - capable of donating an electron pair to form a new covalent bond Examples: $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{OH}^{-}, \mathrm{CN}^{-}, \mathrm{NH}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$ Electrophiles are positively charged ions or neutral molecules that are electron deficient - attracted towards atoms bearing a partial δ - or full negative charge - capable of accepting an electron pair to form a new covalent bond Examples: $\mathrm{H}^{+}, \mathrm{NO}_{2}{ }^{+}$and SO_{3}	
$8 b(i i)$	Curly arrow from O on alcohol going to C of acid chloride group		

$8 b(i i i)$	Diagram showing:				
8b(iv)	HCl	Condensation reactions join two molecules together and remove a small molecule as they join. Water is the most likely small molecule removed but hydrogen chloride HCl is removed in the condensation of alcohols and acid chloride to form esters.			
$8 b(v)$	Faster reaction or catalyst not required	As the equilibrium lies more to the product side in this reaction then more ester is produced at equilibrium			
$8 c(i)$	Secondary	Primary Amine	Secon	y Amine	Tertiary Amine
			$\mathrm{H}_{3} \mathrm{C}-$	$-\mathrm{C}_{2} \mathrm{H}_{5}$	
		1 Carbon attached to the Nitrogen 2 Carbons attached to the Nitrogen			3 Carbons attached to the Nitrogen
$8 C(i i)$	amide	Amide links have a carbonyl group attached to a nitrogen which can have one or two carbon groups attached to the nitrogen.			
8 d (i)	Electrophilic substitution	AlCl_{3} catalyst polarises the $\mathrm{C}-\mathrm{Cl}$ bond in benzoyl chloride and the carbon end joins the benzene ring by electrophilic substitution.			
8 d (ii)	65.2\%	Benovy chloride		$\begin{aligned} & \text { Benrophenenee } \\ & \text { no. of mol }=\frac{\text { mass }}{g \mathrm{fm}}=\frac{18.4}{182}=0.101 \mathrm{~mol} \\ & \text { (extuo) } \end{aligned}$	
	Open Question to include:	3 mark answer	2 mark answer		1 mark answer
9		Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.	Demonstrates a reasonable understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.		Demonstrates a limited understanding of the chemistry involved. The candidate has made ome statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.
10a	Antagonist binds to receptor preventing the natural substrate from binding and stops natural response.	An agonist mimics the natural compound and binds to the receptor molecules to produce a response similar to the natural active compound.			
		$\begin{array}{\|l\|l} \hline \text { antagonist } & \begin{array}{l} \text { An antagonist prevents the natural compound from binding to the receptor, and } \\ \text { so blocks the natural response from occurring. } \end{array} \\ \hline \end{array}$			
10b(i)	$5 \mathrm{~cm}^{3}$	A one in one hundred dilution requires a $5 \mathrm{~cm}^{3}$ of eucalyptol transferred by pipette into a $500 \mathrm{~cm}^{3}$ standard/volumetric flask and the filled up to the mark with deionised water.			
$10 b$ (ii)	0.0598	$\begin{gathered} \text { no. of mol }=\frac{\text { mass }}{\mathrm{gfm}}=\frac{4.605 \mathrm{~g}}{154 \mathrm{~g} \mathrm{~mol}}=0.0299 \mathrm{~mol} \\ \text { concentration }=\frac{\text { no. of } \mathrm{mol}}{\text { Volume }}=\frac{0.0299 \mathrm{~mol}}{0.500 \text { litres }}=0.0598 \mathrm{~mol} \mathrm{l}^{-1} \end{gathered}$			
10 b (ii)	6	$\begin{aligned} & \text { no. of } \mathrm{mol}=\text { Volume } \times \text { conc } \\ & 1 \mathrm{~mol}=6.02 \times \\ & 9.97 \times 10^{-24} \mathrm{~mol}=6.02 \mathrm{x} \end{aligned}$		$\text { itre } \times 9.97 \times 10^{-}$ $\times 9.97 x$	$4 \mathrm{~mol} \mathrm{l}^{-1}=9.97 \times 10^{-24} \mathrm{~mol}$

		$=6.00$ molecules	
$11 a(i)$	$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$ (any order of elements)		
		Skeletal Structure	Full Structural Formula
$11 a(i i)$	Molecules must have similar shape to bind to same receptor protein	Pharmacologically active molecules must have a similar shape to fit the same receptor molecule. This common shape is called the pharmacophore. Agonists fit the receptor and produce the same biological response as the natural substrate. Antagonist fit the receptor but do not cause the biological response inside the cell.	
11 b (i)A	$1^{\text {st }}$ mark: separating funnel $2^{\text {nd }}$ mark: Shake/mix Leave to separate Run off lower layer	The steps of recrystallisation to purify an impure solid include: - dissolving an impure solid gently in a minimum volume of a hot solvent - hot filtration of the resulting mixture to remove any insoluble impurities - cooling the filtrate slowly to allow crystals of the pure compound to form, leaving soluble impurities dissolved in the solvent - filtering, washing and drying the pure crystals The solvent used for recrystallisation is chosen so that the compound being purified is completely soluble at high temperatures and only sparingly soluble at lower temperatures. The solvent used should be: - immiscible with the liquid mixture or solution (usually water) - one in which the solute is more soluble in than the liquid mixture or solution (usually water) - volatile to allow the solute to be obtained by evaporation of the solvent - unreactive with the solute	
11 b (i) B	4.61	$K=\frac{\text { [caffeine }}{\text { [caffeine }}$	$\frac{\text { dichloromethone }}{\text { Wwater }}=\frac{23.5 / 60}{8.5 / 100}=\frac{0.392}{0.085}=4.61$
11 b (i)	Do extraction in three separate volumes of $20 \mathrm{~cm}^{3}$	The quantity of caffeine extracted is greater if a number of extractions using smaller volumes of solvent are carried out rather than a single extraction using a large volume of solvent.	
11c	Diagram completed as shown:		

